Multiplicity results for a differential inclusion problem with non-standard growth
نویسندگان
چکیده
منابع مشابه
EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A DIFFERENTIAL INCLUSION PROBLEM INVOLVING THE p(x)-LAPLACIAN
In this article we consider the differential inclusion − div(|∇u|p(x)−2∇u) ∈ ∂F (x, u) in Ω, u = 0 on ∂Ω which involves the p(x)-Laplacian. By applying the nonsmooth Mountain Pass Theorem, we obtain at least one nontrivial solution; and by applying the symmetric Mountain Pass Theorem, we obtain k-pairs of nontrivial solutions in W 1,p(x) 0 (Ω).
متن کاملMultiplicity of Solutions for a Quasilinear Problem with Supercritical Growth
The multiplicity and concentration of positive solutions are established for the equation − ∆pu+ V (z)|u|p−2u = |u|q−2u+ λ|u|s−2u in R , where 1 < p < N , > 0, p < q < p∗ ≤ s, p∗ = Np N−p , λ ≥ 0 and V is a positive continuous function.
متن کاملMultiplicity Results in the Non-coercive Case for an Elliptic Problem with Critical Growth in the Gradient
We consider the boundary value problem (Pλ) −∆u = λc(x)u+ μ(x)|∇u| + h(x), u ∈ H 0 (Ω) ∩ L∞(Ω), where Ω ⊂ R , N ≥ 3 is a bounded domain with smooth boundary. It is assumed that c 0, c, h belong to L(Ω) for some p > N . Also μ ∈ L∞(Ω) and μ ≥ μ1 > 0 for some μ1 ∈ R. It is known that when λ ≤ 0, problem (Pλ) has at most one solution. In this paper we study, under various assumptions, the structur...
متن کاملAn analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients
This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients. At first, the non-self-adjoint spectral problem is derived. Then its adjoint problem is calculated. After that, for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined. Finally the convergence ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2012
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.08.015